State-by-State STEM Education Resources

Alabama
The Alabama STEM Coalition (AMSTEC) was born out of a NASA-funded Linking Leaders Program. Composed of leaders from business, education, and government, as well as policymakers who advocate for systemic K–20 mathematics, science, and technology education reform, it has grown to a statewide group of integrated stakeholders in mathematics, science, and technology education.

Alaska
STEM Alaska’s guiding objective is to increase student interest and competencies in STEM fields, organized around three strategies: facilitate professional development of teachers, offer enrichment activities to students, and participate in advocacy and outreach to build public awareness and support. Its work is guided by a commitment to hands-on, engaged learning that links students to real-world opportunities and challenges in an environment of high expectations and discovery.

Arizona
The Arizona STEM Network, led by Science Foundation Arizona, is a collaboration between businesses, educators, government, and philanthropy with a common agenda to graduate more Arizona students prepared for the global economy through STEM education. To achieve its vision of a qualified Arizona workforce that stimulates the economy, the network is focused on creating meaningful business engagement opportunities in education, strengthening teacher effectiveness in STEM, integrating it into schools and districts, changing the culture and community fabric to embrace it, and measuring outcomes.

Arkansas
The Arkansas STEM Coalition is a statewide partnership of leaders from the corporate, education, government, and community sectors that plans, encourages, coordinates, and advocates policies, strategies, and programs supportive of excellence in science, technology, engineering, and mathematics teaching and learning in order to expand the economy of Arkansas and produce higher paying jobs.

California
The California STEM Learning Network’s (CSLNet) mission is to help California prepare the nation’s most STEM-capable graduates. CSLNet’s Statewide Initiatives address key learning challenges by building coherence among California’s many STEM-related programs and identifying solutions that can be addressed by a concerted statewide effort.

Colorado
The Colorado Experiential STEM Learning Network (CESLN) is action-based. Its mission is to collaborate with schools, policy makers, and businesses in order to create extraordinary experiences for students and teachers, thus increasing science literacy and promoting science identity construction. The network is designed to create an online and offline community of practice such that interactions lead to an action, such as schools reaching out to businesses for hands-on activities, or community involvement in student projects and initiatives.

Connecticut
The Connecticut Technology Council is a statewide association of technology-oriented companies and institutions, providing leadership in areas of policy advocacy, community building, and assistance for
growing companies. Speaking for over 2,000 companies that employ some 200,000 residents, the Connecticut Technology Council seeks to provide a strong and urgent voice in support of the creation of a culture of innovation. The site includes a focus on STEM education.

Delaware
The Delaware STEM Council was created to evaluate the state of STEM education in our schools and recommend ways to improve it. Its goals are to expand the number of Delaware students who ultimately pursue advanced degrees and careers in STEM fields, and broaden the participation of women and minorities in these fields; expand the STEM capable workforce to create, grow, and attract STEM related businesses to Delaware; and increase STEM literacy for all Delaware students, including those who pursue non-STEM related careers, but need STEM skills.

District of Columbia
The NASA D.C. Space Grant Consortium’s mission is to reach the diverse populations in the District of Columbia to increase the number of students pursuing advanced degrees in the STEM disciplines, and to enlarge and enhance the highly skilled scientific, engineering, and technical workforce of the future to fulfill NASA’s Vision for Space Exploration. The DCSGC combines and leverages the unique and rich resources of its affiliate institutions to support the STEM disciplines in fellowships/scholarships; research infrastructure; and pre-college, higher education, and public service programs within the District of Columbia, in order to inspire the next generation of explorers.

Florida
STEM/florida aims to ensure market-relevant, demand-driven leadership for Florida’s STEM movement. In Florida, a grassroots movement driven by leaders from Florida’s business community, economic and talent development, and philanthropy launched an initiative originally funded as a strategic project of Workforce Florida through a $580,000 grant in 2009, jointly announced by Enterprise Florida. The announcement followed years of dialogue and due diligence with partners including the Florida Chamber of Commerce, Florida Council of 100, Florida Department of Education, and others. The goal of this collaborative initiative was to establish the right vehicle to ensure market-relevant leadership for the state.

Georgia
Through STEM Georgia, the Georgia Department of Education is dedicated to preparing students for 21st century workplace careers by providing high quality educational opportunities in STEM fields. STEM represents the fields of science, technology, engineering, and mathematics. STEM education encourages a curriculum that is driven by problem solving, discovery, exploratory learning, and student-centered development of ideas and solutions. The saturation of technology in most fields means that all students—not just those who plan to pursue a STEM profession—will require a solid foundation to be productive members of the workforce.

Hawaii
Hawaii STEM’s mission is to prepare all students for the challenges and opportunities of the 21st century global economy by providing rigorous, equitable, and accessible education in STEM. Goals of STEM education in Hawaii’s public schools include transforming and revitalizing the teaching and learning of science and mathematics in grades K–12 by purposefully integrating science and mathematics with technology and engineering; proliferating the number of highly-qualified and effective STEM teachers as well as the public school system’s capacity to continuously support and develop them; and expanding STEM learning opportunities and performance expectations for all public school students.
Idaho
Idaho’s i-STEM is a coordinated state-wide effort by the State Department of Education, Idaho Professional–Technical Education, educators, businesses, and industry to support science, technology, engineering, and math education in grades K–12.

Illinois
The Illinois I-STEM Education Initiative collaborates with Illinois campus units and external organizations locally and around the world to meet four goals: facilitate P–16 STEM education outreach, improve teacher training and professional development quality, foster undergraduate and graduate education reform, and shape policy and advocate for STEM education.

Indiana
The I-STEM Resource Network’s overarching goal is to help Indiana achieve its vision to be a national leader in student academic achievement in STEM disciplines and in the quality of its workforce. To do that, the Network will focus on the following goals: teaching, learning, applied research, assessment, and evaluation, community partnerships, and network development.

Iowa
The Governor’s STEM Advisory Council is a partnership of business, policy, and education leaders from across the state convening to bolster STEM education and innovation and better position Iowa’s young people and the state’s economy for the future. The goal of increasing STEM interest and achievement is critical to regaining Iowa’s historic legacy as a leader in education and workforce development. In fact, STEM will be a vital economic development advantage for quality job growth in our state, as STEM graduates are in great demand to meet current and future workforce needs.

Kansas
The mission of the Center for STEM Learning is to provide leadership in science, technology, engineering, and mathematics education by promoting and improving K–12, undergraduate, and graduate STEM education to enhance the quality of all Kansas learners; improving STEM teacher development, including recruitment, pre-service development, induction period support, and in-service development; improving informal education and public outreach; and developing and expanding innovative, interdisciplinary education research that addresses the initiatives of the CSE.

Kentucky
KySTEMx connects state networks and partners to accelerate the growth of policies, practices and partnerships that are needed to expand the number of STEM teachers, increase student achievement in STEM education and, ultimately, grow tomorrow’s innovators. The new STEMx Kentucky network is dedicated to transforming STEM education in Kentucky and providing P–12 and higher education students with the necessary learning to productively join the future STEM workforce.

Louisiana
The goals of L-STEM are to promote engagement and interest in STEM among all Louisianans; develop a statewide STEM bridge network between industry, higher education, and K–12; increase involvement of minorities, women, and underrepresented groups in the STEM disciplines; increase opportunities for STEM enrichment and engagement at the middle and elementary levels; and increase access to quality STEM education across the state.
Maine
MaineSTEM.org is the online home of two organizations dedicated to improving STEM education policy and workforce development in the state of Maine: the Maine STEM Collaborative and the Maine STEM Council. The site also includes links to other organizations supporting STEM in Maine, as well as resources and news items.

Maryland
STEMnet provides a comprehensive suite of programs aimed at accelerating teacher and student growth in STEM. Programs currently on STEMnet include STEM Specialist in the Classroom, STEM Challenge Program, and the STEM Resource Clearinghouse.

Massachusetts
The Regional PreK–16 STEM Networks bring together K–12, public and independent higher education, businesses, and regional and community organizations around science, technology, engineering, and mathematics education to address the need for systemic change. In addition to administering regional projects, the Networks regularly communicate information about funding opportunities, events, announcements, and training sessions.

Michigan
The Michigan STEM Partnership is a statewide, public–private collaborative that includes educators, employers, policy-makers, and others who are concerned about addressing the current lack of STEM skills in schoolchildren and job applicants.

Minnesota
mn-stem.com is an educational website launched as part of a larger initiative promoting STEM. The website’s goal is to help students discover how their participation in certain coursework can lead directly to exciting and rewarding careers.

Mississippi
The University of Mississippi has launched an initiative to address critical national, state, and local needs for a more STEM-educated workforce and citizenry.

Missouri
The vision of the KC STEM Alliance is to see that a diverse, innovative, and sustainable STEM workforce becomes a reality. By developing an environment that leverages the strengths of educators, STEM organizations, and local industry, we can create a collaborative network to encourage and sustain interest in STEM careers.

Montana
In response to the national imperative to improve mathematics and science education for our students, the Montana Math and Science Teacher Initiative was created as a statewide partnership involving multiple stakeholders and policy makers to assess the situation of mathematics and science education in Montana.

Nebraska
Increasingly, Nebraska youth are told that their futures depend on understanding challenging STEM concepts. These skills and competencies are vital for the modern economy, but there is simply not
enough time in the school day to provide the kinds of hands-on, engaging, and inspiring activities that enable young people to fully grasp these complex topics.

Nevada
The Nevada STEM Coalition aims to promote leadership and collaboration among business, community, education, and government stakeholders to develop nationally recognized science, technology, engineering, and math (STEM) education for all Nevada students.

New Hampshire
STEM NH’s goal is to increase understanding of STEM and related careers through the development and promotion of hands-on learning in all areas of science, technology, engineering, and mathematics.

New Jersey
The Governor’s STEM Scholars program is a joint initiative of the Governor’s Office, the New Jersey Department of Education, the Secretary of Higher Education, and the Council. Its purpose is to identify, promote, and mentor promising New Jersey students who are interested in working in STEM.

New Mexico
NMSTEM Connection provides information about science, technology, engineering, and mathematics resources for students, teachers, parents, counselors, and administrators as well as higher education faculty/staff and community members interested in the promotion of STEM education in New Mexico.

New York
The Center for K–12 STEM Education focuses on developing lessons and techniques that bring together STEM disciplines and concepts through creative hands-on projects and experiments. The center focuses on the concept of engineering as the application of science and technology being a powerful lens for young people through which to view—and truly appreciate—the rules of the natural world.

North Carolina
The NC STEM Learning Network helps ensure that all North Carolina students are career and college ready with rigorous and relevant science, technology, engineering, and mathematics education, providing them with more choices in life and bolstering the economic strength of their communities. NC STEM does this by guiding implementation of the state’s coordinated STEM Strategy to increase student achievement and create greater public support for STEM education.

North Dakota
STEM is about changing classroom dynamics to motivate all students. The methodology includes integration of content and context; in other words, connecting the abstract to the world of students. On a macro level, our school systems are fragmented and do not do well to serve the state workforce needs or reinforce our economic development investments. A proven method of changing classroom dynamics and serving the state’s future needs is to involve all stakeholders in a coordinated statewide STEM Learning Network. The Great Plains STEM Education Center is in the process of facilitating that effort.

Ohio
The Ohio STEM Learning Network (OSLN) is more than a network that only assists in starting up STEM schools. OSLN has evolved to a network that leverages existing STEM schools and programs to spread effective practices and tools across the state and the nation. It supports the growth and quality of STEM
education in Ohio by connecting the best STEM schools, teachers and administrators to each other and to national resources; assisting schools and communities that want to create new STEM schools and programs; and driving innovations through a network approach.

Oklahoma
The Center for Research in STEM Teaching and Learning supports initiatives that encourage transformative research on teaching and learning across multiple colleges and programs at Oklahoma State University.

Oregon
Oregon is engaging in a networking model for promoting changes in STEM education statewide that are effective and coordinated. The initial input for the Oregon STEM Education Initiative was provided by representatives from business and education, including organizations that focus on education both inside and outside of the school day.

Pennsylvania
ASSET STEM Education is a STEM education improvement nonprofit. It fosters STEM fluency and college/career readiness by providing educators with highly effective professional development, hands-on educational materials, and consulting services.

Rhode Island
Rhode Island’s Experimental Program to Stimulate Competitive Research conducts groundbreaking research and develops academic talent in the science and technology fields to increase competitiveness in research and development, build a more capable workforce, and fuel economic growth in the Ocean State.

South Carolina
The South Carolina Coalition for Mathematics & Science brings together advocates from business/industry, education, government, and community organizations to catalyze action through advocacy.

South Dakota
The Dakota’s K–12 STEM Initiative is a collaborative effort among partners across K–12, higher education and research centers across the Dakotas. The Initiative is aimed at increasing K–12 awareness and knowledge of local research activities and resources available in this region. Content for teacher professional development and classroom resources will focus on STEM topics, providing students the opportunity to engage in research-based learning activities right from their classroom.

Tennessee
The Tennessee STEM Innovation Network is a unique public–private collaboration between the Tennessee Department of Education and Battelle Memorial Institute designed to promote and expand the teaching and learning of science, technology, engineering, and mathematics education in K–12 public schools across Tennessee.

Texas
The Texas STEM Centers address the challenges of tomorrow’s technology-driven economy by researching, developing, and supporting best practices in STEM education for K–12 schools. The Texas
STEM Center Coalition works with T-STEM Academies as well as all Texas schools to transform teaching and learning methods, improve achievement in education, and ensure all students are college ready, career ready, and life ready. The seven centers are part of Educate Texas.

Utah
The STEM Action Center will prioritize STEM education to develop Utah’s workforce of the future. Prioritization initiatives will increase the number and quality of educators and professionals, and will drive research and implementation of STEM education best practices across Utah.

Vermont
The goals of the Math and Science Partnership are: 1) to increase the academic achievement of students in mathematics and science by enhancing the content knowledge and teaching skills of classroom teachers; 2) to build statewide capacity for professional development of K–12 staff by establishing networks of highly skilled teacher leaders in mathematics and science; and 3) to develop partnerships among K–12 educators, faculty, and higher education personnel. Funds from the MSP are currently being used to support high quality professional development programs in Vermont.

Virginia
Governor’s STEM Academies are programs designed to expand options for the general student population to acquire STEM literacy and other critical skills, knowledge, and credentials that will prepare them for high-demand, high-wage, and high-skill careers in Virginia. Each academy is a partnership among school divisions, postsecondary institutions, and business and industry.

Washington
Washington STEM advances excellence, equity, and innovation in science, technology, engineering, and math (STEM) education.

West Virginia
The West Virginia University STEM Education Initiative maintains several funded STEM projects, including one through the Noyce Foundation, which aims to help young people become curious, thoughtful, and engaged learners. The Noyce Foundation focuses on a few key areas: improving the teaching of math and science in public schools, developing leadership to support student achievement, forwarding education policy and research, and expanding opportunities for students to experience hands-on science in out-of-school settings.

Wisconsin
Wisconsin STEM’s goal is to provide valuable resources to young people and adults interested in pursuing STEM careers, such as supportive role models, excellent instruction and training, and access to real-world applications and research opportunities.

Wyoming
The Science and Mathematics Teaching Center is an intercollegiate interdisciplinary program committed to excellence in K–20 science, technology, engineering, and mathematics teaching and learning.